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What’s Wrong with Risk Matrices?

Louis Anthony (Tony)

1. INTRODUCTION

A risk matrix is a table that has several categories
of “probability,” “likelihood,” or “frequency” for its
rows (or columns) and several categories of “sever-
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ity,

impact,” or “consequences” for its columns (or
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Risk matrices—tables mapping “frequency” and “severity” ratings to corresponding risk pri-
ority levels—are popular in applications as diverse as terrorism risk analysis, highway con-
struction project management, office building risk analysis, climate change risk management,
and enterprise risk management (ERM). National and international standards (e.g., Mili-
tary Standard 882C and AS/NZS 4360:1999) have stimulated adoption of risk matrices by
many organizations and risk consultants. However, little research rigorously validates their
performance in actually improving risk management decisions. This article examines some
mathematical properties of risk matrices and shows that they have the following limitations.
(a) Poor Resolution. Typical risk matrices can correctly and unambiguously compare only a
small fraction (e.g., less than 10%) of randomly selected pairs of hazards. They can assign iden-
tical ratings to quantitatively very different risks (“range compression”). (b) Errors. Risk ma-
trices can mistakenly assign higher qualitative ratings to quantitatively smaller risks. For risks
with negatively correlated frequencies and severities, they can be “worse than useless,” leading
to worse-than-random decisions. (c) Suboptimal Resource Allocation. Effective allocation of
resources to risk-reducing countermeasures cannot be based on the categories provided by
risk matrices. (d) Ambiguous Inputs and Outputs. Categorizations of severity cannot be made
objectively for uncertain consequences. Inputs to risk matrices (e.g., frequency and severity
categorizations) and resulting outputs (i.e., risk ratings) require subjective interpretation, and
different users may obtain opposite ratings of the same quantitative risks. These limitations
suggest that risk matrices should be used with caution, and only with careful explanations of
embedded judgments.

KEY WORDS: AS/NZS 4360; decision analysis; enterprise risk management; Military Standard 882C;
qualitative risk assessment; risk matrix; semiquantitative risk assessment; worse-than-useless information

assessing risks and setting priorities in addressing is-
sues as diverse as unexpected geotechnical problems
at bridge piers and unwillingness of landowners to sell
land near critical road junctions.

The green, yellow, and red cells indicate low,
medium, and high or urgent risk levels based on rat-

rows, respectively). It associates a recommended level
of risk, urgency, priority, or management action with
each row-column pair, that is, with each cell. Table I
shows an example of a standard 5 x 5 risk matrix de-
veloped by the Federal Highway Administration for
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ings of probability (vertical axis) and impact (hori-
zontal axis) ranging from “VL” (very low) to “VH”
(very high).

Table II shows a similar example of a 5 x 5 risk
matrix from a 2007 Federal Aviation Administration
(FAA) Advisory Circular (AC) introducing the con-
cept of a safety management system for airport opera-
tors. The accompanying explanation states: “Hazards
are ranked according to the severity and the likeli-
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Table I. Standard 5 x 5 Risk Matrix for Federal Highway
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Table II. Example of a Predictive Risk Matrix for the Federal

Administration Aviation Administration
:’robablllty\ VL L M H VH Soverity
mpact No Safety . . .
Effoct Minor Major Hazardous | Catastrophic
VH Red Red Red Likelhood
H Red Red Red
M Red Red
L Red Red Frequent
VL Red
Source: Federal Highway Administration, 2006 Probable
http://international.fhwa.dot.gov/riskassess/images/figure_12.htm.
Remote
hood of their risk, which is illustrated by where they
. . . . . . Extremely
fall on the risk matrix. Hazards with high risk receive Remote
higher priority for treatment and mitigation.” Many
similar examples can be found for regulatory agen- Extremely
cies, regulated industries, and public- and private- Improbable

sector organizations. Training courses and software
tools, such as MITRE’s Risk Matrix tool for pro-
gram risk management (MITRE, 1999-2007) help
to automate risk matrix creation, application, and
documentation.

The use of such risk matrices to set priorities
and guide resource allocations has also been recom-
mended in national and international standards. It
has spread through many areas of applied risk man-
agement consulting and practice, including enterprise
risk management (ERM) and corporate governance
(partly under the influence of the Sarbanes Oxley
Act and international standards such as AUS/NZ
4360:1999); highway construction project risk man-
agement (Table I); airport safety (Table I1); homeland
security; and risk assessment of potential threats to
office buildings, ranging from hurricanes to terrorist
attacks (Renfroe & Smith, 2007).

Risk matrices have been widely praised and
adopted as simple, effective approaches to risk man-
agement. They provide a clear framework for sys-
tematic review of individual risks and portfolios of
risks; convenient documentation for the rationale of
risk rankings and priority setting; relatively simple-
appearing inputs and outputs, often with attractively
colored grids; opportunities for many stakeholders to
participate in customizing category definitions and ac-
tion levels; and opportunities for consultants to train
different parts of organizations on “risk culture” con-
cepts at different levels of detail, from simply posi-
tioning different hazards within a predefined matrix
to helping thought leaders try to define risk categories
and express “risk appetite” preferences in the color
coding of the cells. As many risk matrix practitioners
and advocates have pointed out, constructing, using,

MEDIUM RISK
LOW RISK

Source: Federal Aviation Administration, 2007
www.faa.gov/airports_airtraffic/airports/resources/advisory-
circulars/media/150-5200-37/150_5200_37.doc.

and socializing risk matrices within an organization
requires no special expertise in quantitative risk as-
sessment methods or data analysis.

Yet, despite these advantages and their wide ac-
ceptance and use, there has been very little rigorous
empirical or theoretical study of how well risk ma-
trices succeed in actually leading to improved risk
management decisions. Very little prior technical lit-
erature specifically addresses logical and mathemat-
ical limitations of risk matrices (but see Cox et al.,
2005). Risk matrices are different enough from other
topics (such as multivariate classification, clustering,
and learning with correct classes provided as training
data) torequire separate investigation of their proper-
ties, in part because “risk” is not a measured attribute,
but is derived from frequency and severity inputs
through a priori specified formulas such as Risk =
Frequency x Severity. This article explores fundamen-
tal mathematical and logical limitations of risk matri-
ces as sources of information for risk management
decision making and priority setting.

2. ANORMATIVE DECISION-ANALYTIC
FRAMEWORK

Many decisionmakers and consultants believe
that, while risk matrices may be only rough
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Table III. A 2 x 2 Risk Matrix

Consequence

Probability Low High
High Medium High
Low Low Medium

approximate tools for risk analysis, they are very use-
ful for distinguishing qualitatively between the most
urgent and least urgent risks in many settings and
are certainly much better than nothing, for example,
than purely random decision making. This section ex-
amines these beliefs from the standpoint of optimal
statistical decision making in a simple framework for
which it is possible to obtain exact results.

The simplest possible risk matrix is a 2 x 2 table
that results from dichotomizing each of the two axes,
referred to here as “probability” and “consequence.”
(Many other axes such as “frequency” and “sever-
ity” or “likelihood” and “magnitude” are also used,
but changing the names does not affect the logic.)
Table III shows such a matrix. Now, consider using
it to categorize quantitative risks. For simplicity, sup-
pose that the two attributes, Probability and Con-
sequence have quantitative values between 0 and 1,
inclusive (where 0 = minimal or zero adverse con-
sequence and 1 = maximum adverse consequence).
Define the quantitative risk for any (Probability, Con-
sequence) pair to be their product, Risk = Probabil-
ity x Consequence, as advocated in many risk matrix
methodology documents. The risk matrix designer can
choose where to draw the boundaries between low
and high values on each axis. Let the boundary be-
tween low and high consequence corresponds to a
numerical value x between 0 and 1; and let the bound-
ary between low and high probability correspond to
a value y between 0 and 1.

To assess the performance of the risk matrix in
supporting effective risk management decisions, con-
sider the following specific decision problem. The de-
cisionmaker must choose which of two risks, A and
B, to eliminate. (She can only afford to eliminate
one of them.) The quantitative values of Probabil-
ity and Consequence are a priori independently and
uniformly distributed between 0 and 1 for each of A
and B. The only information that the decisionmaker
has is knowledge of which cell of the risk matrix each
risk falls in. (Thus, the risk matrix provides statistical
information about the true but unknown quantitative
risk; it is a lossy information channel.) How well can
the information provided by the risk matrix be used to
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identify the quantitatively greater risk? Equivalently,
how well can the categorizations of quantitative risks
provided by the matrix be used to identify the decision
that maximizes expected utility (minimizes expected
loss)?

The answer depends on how the risk matrix is
designed and on the joint probability distribution of
Probability and Consequence values. In general, the
two risks can be ranked with no error if one risk falls
in the high (red) cell in the upper right of Table I
and the other falls in the low (green) cell in the lower
left (since every risk in the high cell is quantitatively
as well as qualitatively greater than any risk in the
low cell). The probability of this event is 2 x (1 —
x)(1 — y)xy. This symmetric function is maximized
by choosing x = y = 0.5. (Otherwise, if the two risks
have the same qualitative rating, then there is no way
to choose among them based on the risk matrix, and
we can assume that there is a 50-50 chance of making
the right choice, that is, 50% error probability. If one
of the two ratings is medium and the other is not,
then the error probability from choosing the risk with
the higher rating is positive, since some points in the
cell with the higher qualitative rating have smaller
quantitative risk values than some points in the cell
with the lower qualitative rating; see Lemma 1 in the
next section.)

The probability that two risks can be unambigu-
ously ranked (i.e., with zero error probability) using
the risk matrix withx =y =0.5is (1/2) x (1/4) =0.125
(i.e., it is the probability that one of them falls in one
cell of the “high/low” diagonal and the other falls in
the other cell of that diagonal). The probability that
the two risks cannot be compared using the matrix
with better than random accuracy (50% error prob-
ability) is the probability that both risks receive the
same qualitative rating; this is 0.375 = (1/4) x [(1/2) +
(1/4) + (1/2) + (1/4)] (considering the four cells clock-
wise, starting with the upper left). The probability that
the two risks can be compared using the matrix with
error probability greater than zero but less than 50%
is1-0.125-0.375=0.5.

Next, suppose that the risk matrix is constructed
with x =y = 0.5, but that it is applied in decision set-
tings where the joint probability distribution of Prob-
ability and Consequence is uncertain. Now, how well
the matrix can identify which of two risks is greater
depends completely on the joint probability distribu-
tion of (Probability, Consequence) pairs. For example,
if Probability and Consequence values are uniformly
distributed along the diagonal from (0, 0) to (1, 1),
then there is a 50% probability that the two risks can
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be classified with zero error probability (if one of them
is in the high cell and the other is in the low cell);
otherwise, the error probability is 50% (if both are
in the same cell). Thus, under these very favorable
conditions of perfect positive correlation, the error
probability is 0.5 x 0.5 = 0.25. Conversely, if Proba-
bility and Consequence values are perfectly negatively
correlated and are concentrated along the diagonal
from (0, 1) to (1, 0), then all risks will be assigned
a risk rating of “Medium” (although their numerical
values range from 0 at the ends of the upper-left to
lower-right diagonal to 0.25 in the middle), and the
risk matrix will provide no useful information for dis-
criminating between greater and lesser risks. Under
these less favorable conditions, the decisionmaker us-
ing the risk matrix can do no better than random de-
cision making, and the error probability increases to
50%.

Finally, if Probability and Consequence values are
negatively correlated and concentrated along the line
Probability = 0.75 — Consequence (for Consequence
values between 0 and 0.75), then all points on this
line in the medium cells (i.e., for Consequence val-
ues between 0 and 0.25 or between 0.5 and 0.75) have
smaller quantitative risks than any points in the low
cell (i.e., for Consequence values between 0.25 and
0.5). For example, the pair (0.1, 0.65) would be clas-
sified as a medium risk (although its quantitative risk
value is 0.1 x 0.65 = 0.065), while the pair (0.37, 0.38)
would be classified as a low risk, even though its quan-
titative risk value is more than twice as great, 0.37 x
0.38 = 0.14. (More generally, such counterexamples
can be constructed by noting that each iso-risk con-
tour Probability x Consequence = constant is convex,
so that a straight line passing through the two points
where such a contour intersects the edges of a cell of
the matrix will lie above the contour within the cell
but below it outside the cell.)

For this unfavorable joint distribution of (Proba-
bility, Consequence) pairs, the information provided
by the risk matrix is worse than useless (Cox &
Popken, 2007) in the sense that, whenever it discrim-
inates between two risks (by labeling one medium
and the other low), it reverses the correct (quantita-
tive) risk ranking by assigning the higher qualitative
risk category to the quantitatively smaller risk. Thus,
a decisionmaker who uses the risk matrix to make
decisions would have a lower expected utility in this
case than one who ignores the risk matrix information
and makes decisions randomly, for example, by toss-
ing a fair coin. (Similar examples can be constructed
for the high risk cell in the upper right corner of Ta-

Cox

ble II1. For example, the (Probability, Consequence)
pair (0.6, 0.6) is rated as high and the pair (0.48, 1) is
rated as medium, even though the latter has a higher
quantitative risk (0.48) than the former (0.36).)

The question of how risk matrices ideally should
be constructed to improve risk management decisions
has no simple answer, both because risk matrices are
typically used as only one component in informing
eventual risk management decisions and also because
their performance depends on the joint distribution of
the two attributes, Probability and Consequence, as il-
lustrated in the above examples. Since risk matrices
are commonly used when quantitative data are lim-
ited or unavailable, this joint distribution is typically
unknown or very uncertain. This knowledge gap im-
plies that the actual performance of a risk matrix and
whether it is helpful, no better than random, or worse
than useless may be unknown. It also prevents easy
application of traditional decision-analytic, statistical,
artificial intelligence, and engineering methods for
similar problems (e.g., for optimal classification and
for discretization of multivariate relations) that re-
quire the joint distribution of the attributes as an
input.

However, the simplest case of a 2 x 2 risk matrix
does suggest two important related conclusions. First,
it is not necessarily true that risk matrices provide
qualitatively useful information for setting risk pri-
orities and for identifying risks that are high enough
to worry about and risks that are low enough to be
neglected or postponed. (As just discussed, the in-
formation they provide can be worse than useless
when probability and consequence are negatively cor-
related.) Second, use of a risk matrix to categorize
risks is not always better than—or even as good as—
purely random decision making. Thus, the common
assumption that risk matrices, although imprecise,
do some good in helping to focus attention on the
most serious problems and in screening out less se-
rious problems is not necessarily justified. Although
risk matrices can indeed be very useful if probabil-
ity and consequence values are positively correlated,
they can be worse than useless when probability and
consequence values are negatively correlated. Un-
fortunately, negative correlation may be common in
practice, for example, when the risks of concern in-
clude a mix of low-probability, high-consequence and
higher-probability, low-consequence events.

Although this section has been restricted to 2 x
2 risk matrices, the nature of the counterexamples
in which the optimal statistical decision is to ignore
risk matrix information (e.g., examples with joint
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distributions of probability-consequence pairs con-
centrated on negatively sloped lines that intersect
with convex iso-risk contours where they cross cell
boundaries) implies that simply changing the position
or number of grid lines cannot eliminate the prob-
lem. A similar construction can be carried out no
matter how many cells a matrix has and no matter
where the cell boundaries are located. Generalizing
the decision problem to that of selecting a subset of
risks to remediate, from among a larger set of many
risks (rather than only deciding which of two risks is
greater) also does not change the main conclusion.
For some joint distributions of probability and conse-
quence values, normative decision theory would re-
quire not using the qualitative risk rating information
provided by a risk matrix, as it reverses the correct
(quantitative) risk ratings that would be obtained us-
ing perfect information.

What can be salvaged? Several directions for ad-
vancing research on risk matrices appear promising.
One is to consider applications in which there are suf-
ficient data to draw some inferences about the statis-
tical distribution of (Probability, Consequence) pairs.
If data are sufficiently plentiful, then statistical and
artificial intelligence tools such as classification trees
(Chen et al., 2006), rough sets (Dreiseitl et al., 1999),
and vector quantization (Lloyd et al.,2007) can poten-
tially be applied to help design risk matrices that give
efficient or optimal (according to various criteria) dis-
crete approximations to the quantitative distribution
of risks. In such data-rich settings, it might be pos-
sible to use risk matrices when they are useful (e.g.,
if probability and consequence are strongly positively
correlated) and to avoid them when they are not (e.g.,
if probability and consequence are strongly negatively
correlated).

A different approach is to consider normative
properties or axioms that risk matrix designers might
ideally want their matrices to satisfy, and then to iden-
tify whether such matrices exist (and, if so, whether
they are unique). This normative axiomatic approach,
explored in the following section, can be used even
when sufficient data are not available to estimate
the joint distribution of probability and consequence
values.

3. LOGICAL COMPATIBILITY OF RISK
MATRICES WITH QUANTITATIVE RISKS

What does a risk matrix mean? One natural
intuitive interpretation is that it provides a rough
discrete (ordered categorical) approximation to a
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more detailed—but notreadily available—underlying
quantitative relation. At least in principle, the under-
lying relation is described by a risk formula such as
one of the following:

Risk = probability x consequence (or frequency
x severity or likelihood x impact or threat

x (vulnerability x consequence), etc.)

(We will use “frequency” or “probability” and “sever-
ity” or “consequence” as the default names of the
two axes, and “risk” as the name for their product,
but the analysis applies to any similar mathematical
structure, regardless of the names.) For example, it
might be supposed that the division of the probabil-
ity axis into five ordered qualitative categories (e.g.,
from very rare to almost certain) corresponds roughly
to a partitioning of a quantitative probability axis into
the intervals [0, 0.2), [0.2, 0.4), [04, 0.6), [0.6, 0.8), and
[0.8, 1] (where square brackets indicate that the cor-
responding end point is included in an interval and
parentheses indicate that it is not). Similarly, the five
ordered categories for the severity axis might natu-
rally be interpreted as corresponding to numerical in-
tervals, [0, 0.2), [0.2, 0.4), [04, 0.6), [0.6, 0.8), and [0.8,
1], on a quantitative value scale (e.g., a von Neumann-
Morgenstern utility scale) normalized to run from 0
to 1, where 0 = no adverse impact, 1 = worst possi-
ble adverse outcome considered, and values between
0 and 1 represent adverse impacts or consequences
with values intermediate between no adverse impact
and worst possible adverse impact.

However, such an intuitive interpretation of the
risk matrix as an approximation to an underlying
quantitative model can only be sustained if the risk
matrix satisfies certain constraints. To be most useful,
a risk matrix should, at a minimum, discriminate re-
liably between very high and very low risks, so that
it can be used as an effective screening tool to fo-
cus risk management attention and resources. This
requirement can be expressed more formally as the
following principle of weak consistency between the
ordered categorization of risks provided by the matrix
and the ranking of risks by an underlying quantitative
formula, such as one of those above.

DEFINITION OF WEAK CONSISTENCY: A risk matrix with
more than one “color” (level of risk priority) for its
cells satisfies weak consistency with a quantitative risk
interpretation if points in its top risk category represent
higher quantitative risks than points in its bottom cat-

egory.
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Here, “quantitative risk” is defined as the product of
a point’s coordinates when the axes are interpreted
quantitatively, for example, frequency x severity. If
weak consistency holds, then all risks in the top quali-
tative category are quantitatively larger than all risks
in the lowest qualitative category. In this case, the risk
matrix can discriminate reliably between at least some
risks, even though it does not require quantifying the
probability and consequence attributes. It may then
serve as a useful screening tool, which is one of the
main practical uses of risk matrices. But if weak con-
sistency does not hold, then risks that are screened
out as being relatively small according to the matrix
may in fact be larger than some of those that the ma-
trix classifies as top priority, thus leading to a misallo-
cation of risk management resources. It is therefore
desirable to construct risk matrices that satisfy weak
consistency, if possible.

Weak consistency is not an arbitrary axiom. It is
implied by the hypothesis that some quantitative in-
terpretation of the risk categories in a matrix exists,
at least in principle (i.e., that there is some underlying
quantitative risk scale such that the consecutive ordi-
nal risk categories of the matrix correspond, at least
approximately, to consecutive intervals on the quanti-
tative scale), even if this scale is unknown, imprecise,
or undefined in practice. If it does not hold, then a risk
matrix does not mean what many users might expect
it to mean, that is, that risks rated in the top cate-
gory (red) are larger than those rated in the bottom
category (green). Thus, transparency of interpretation
provides another incentive for designing risk matrices
to satisfy weak consistency.

3.1. Discussion of Weak Consistency

More generally, a risk matrix partitions alterna-
tives (typically representing different threats, hazards,
risk reduction or investment opportunities, risk man-
agement actions, etc.) into distinct categories corre-
sponding to the different priority levels or “colors”
of the matrix cells. Weak consistency implies that this
partitioning assigns the highest qualitative level (e.g.,
red) to the alternatives that actually do have higher
quantitative risk values than those assigned the low-
est qualitative level (e.g., green). If weak consistency
holds, the qualitative classification given by the matrix
is, in this sense, at least roughly consistent with what
a quantitative analysis would show. Red cells do rep-
resent unambiguously higher risks than green cells,
where we use “red” to denote the highest urgency
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Table IV. A 5 x 5 Matrix Compatible with
Risk = Probability x Consequence

Prob\Consequence 0-0.2 0.2-04 04-06 0.6-0.8 0.8-1

0.8-1 Green Green Yellow Red Red
0.6-0.8 Green Green Yellow Yellow Red
0.4-0.6 Green Green Green Yellow Yellow
0.2-0.4 Green Green Green Green Green
0-0.2 Green Green Green Green Green

level (that of the upper right-most cell, if the matrix
axes are oriented to represent increasing probability
or frequency on one axis and increasing severity of
consequences on the other) and we use “green” to
denote the lowest urgency level (that of the lowest
left-most cell in such a table). This provides a logi-
cal basis for screening risks into “larger” (red) and
“smaller” (green) categories.

Table IV shows an assignment of risk levels that
satisfies weak consistency for a 5 x 5 matrix in which
the rows and columns are interpreted as equal par-
titions of two numerical scales, each normalized to
run from 0 to 1. Any point in a red cell has a quan-
titative value (calculated as the product of the hori-
zontal and vertical coordinates) of at least 0.48, while
no point in any green cell has a value greater than
0.40.

3.2. Logical Implications of Weak Consistency

Weak consistency is more restrictive than might
be expected. For example, neither of the colorings in
Tables I and II satisfies weak consistency. See Lemma
2.) Indeed, it implies some important constraints on
possible colorings of risk matrices.

Lemma 1. If a risk matrix satisfies weak consistency,
then no red cell can share an edge with a green cell.

Proof: Suppose that, to the contrary, a red cell and a
green cell do share an edge. The iso-risk contour (i.e.,
the locus of all frequency-severity combinations hav-
ing the same value of the product frequency x sever-
ity) passing through the midpoint of the common edge
is a curve with negative slope. (Itis a segment of a rect-
angular hyperbola, running from northwest to south-
east.) Thus, it divides both cells into regions above
and below this contour curve. Points that lie above
this contour in the green cell have higher quantita-
tive risk values than points lying below it in the red
cell, contradicting weak consistency. Therefore, in a
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risk matrix satisfying weak consistency, red and green
cells cannot share an edge. QED

Comment: 1t is sufficient for this proof that iso-risk
contours exist and have negative slopes. Thus, risk
could be any smooth increasing function of frequency
and severity (or whatever attributes the two axes of
the matrix represent), not necessarily their product.
However, the product of the coordinates is often used
in practice in discussions of the concept of quantita-
tive risk that accompany risk matrices, and we will
use it as the default definition for quantitative risk in
numerical examples.

LemMA 2: If a risk matrix satisfies weak consistency and
has atleast two colors (“green” in the lower left cell and
“red” in the upper right cell, if axes are oriented to show
increasing frequency and severity), then no red cell can
occur in the left column or in the bottom row of the risk
matrix.

Proof: Contours for all sufficiently small risk values
(namely, values of all risk contours below and to the
left of the one passing through the upper right cor-
ner of the lower left-most cell) pass through all cells
in the left-most column and in the bottom row of a
risk matrix. If any of these cells is red, then all points
below one of these contours in the red cell will have
lower quantitative risk levels than points above it in
the green lower left-most cell of the table. This would
contradict weak consistency; thus, no such red cell can
exist. QED

An implication of Lemmas 1 and 2 is that any risk
matrix that satisfies weak consistency and that does
not assign identical priorities to all cells must have
at least three colors: for example, red for the upper
right-most cell; green for the lower left-most cell; and
at least one other color (i.e., priority rating), which we
will call yellow, to separate red and green cells.

3.3. The Betweenness Axiom: Motivation
and Implications

The hypothesis that a risk matrix provides an ap-
proximate qualitative representation of underlying
quantitative risks also implies that arbitrarily small
increases in frequency and severity should not cre-
ate discontinuous jumps in risk categorization from
lowest priority (“green”) to top priority (“red”) with-
out going through any intermediate levels (“yellow”).
(Notice that this condition is violated in Tables I-
II1, but holds in Table IV.) Indeed, if the successive
risk categories in a risk matrix represent (at least ap-
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proximately) successive intervals on some underlying
quantitative risk scale, then continuously increasing
quantitative risk from 0 to 1 should cause the corre-
sponding qualitative rating to pass through increas-
ingly severe categorical values. A weaker condition is
that the qualitative risk should pass through at least
one intermediate value between green and red as the
quantitative risk increases continuously from 0 to 1.
Otherwise, a risk matrix does not mean what users
might intuitively expect: that intermediate risk cate-
gories describe risks between the highest (red) and
lowest (green) ones. These considerations motivate
the following axiom.

DEFINITION OF BETWEENNESS: A risk matrix satisfies the
axiom of betweenness if every positively sloped line
segment that lies in a green cell at its lower (left) end and
in a red cell at its upper (right) end passes through at
least one intermediate cell (meaning one that is neither
green nor red) between them.

Comment: Tables I and IT both have red cells in Row 2
and violate betweenness, that is, in each an arbitrarily
small increase in frequency and severity can cause a
risk to be reclassified as red instead of green, without
going through yellow. A 2 x 2 table such as Table 11
lacks sufficient resolution to allow betweenness, since
there are no cells between the green lower left cell
and the red upper right cell. Thus, betweenness can
only be required for 3 x 3 and larger risk matrices.

Only some risk matrices satisfy both weak consis-
tency and betweenness. Among all 3 x 3 matrices hav-
ing more than one color, only one coloring of the cells
satisfies both axioms. Using our conventional color-
ing scheme (green for lowest risk, red for highest risk,
yellow for intermediate risk), this is the matrix with
red in the upper right cell, green throughout the left
column and bottom row, and yellow in all other cells.

3.4. Consistent Coloring

The final normative axiom considered in this ar-
ticle is motivated by the idea that equal quantitative
risks should ideally have the same qualitative risk rat-
ing (color). Although this condition is impossible to
achieve exactly in a discrete risk matrix, for the reason
shown in the proof of Lemma 1 (essentially, horizon-
tal and vertical grid lines cannot reproduce negatively
sloped iso-risk contours), one rough approximation
might be to enforce it for at least the two most extreme
risk categories, red and green, while accepting some
inconsistencies for intermediate colors. Accordingly,
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we will consider a requirement that all cells that con-
tain red contours (meaning iso-risk contours that pass
through other red cells) should themselves be red, un-
less the low resolution of the risk matrix causes them
to also contain green contours. (A cell that contains
both red and green contours has insufficient resolu-
tion to separate top-priority and bottom-priority risks
and will not be required a priori to have either color.)
Conversely, cells that contain green contours but no
red ones should themselves be green. This motivates
the following axiom of consistent coloring.

DEFINITION OF CONSISTENT COLORING. (1) A cell is red
if it contains points with quantitative risks at least as
high as those in other red cells (and does not con-
tain points with quantitative risk as small as those in
any green cell). (2) A cell is colored green if it con-
tains some points with risks at least as small as those
in other green cells (and does not contain points with
quantitative risks as high as those in any red cell). (3)
A cellis colored an intermediate color (neither red nor
green) only if either (a) it lies between a red cell and
a green cell; or (b) it contains points with quantitative
risks higher than those in some red cells and also points
with quantitative risks lower than those in some green
cells.

Intuitively, one might think of an iso-risk contour
as being colored green if it passes through one or more
green cells but not through any red cells; as being col-
ored red if it passes through one or more red cells but
not through any green cells; and as being colored yel-
low (or some other intermediate color) if it passes
through both red and green cells (or through nei-
ther red nor green cells). Then, the consistent color-
ing principle implies that any cell that contains green
contours but no red contours must itself be green,
while any cell that contains red contours but no green
ones must itself be red. This is admittedly only one
possibility for trying to capture the intuitive idea that
all sufficiently high risks should have the same color
(“red”) and all sufficiently low risks should have the
same color (“green”). Other normative axioms could
perhaps be formulated, but this article will only use
the three already defined.

3.5. Implications of the Three Axioms

TueoreM 1: In a risk matrix satisfying weak consis-
tency, betweenness, and consistent coloring: (a) all cells
in the left-most column and in the bottom row are green
(lowest-priority); and (b) all the cells in the second col-
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umn from the left and in the second row from the bot-
tom are nonred.

Proof: See the Appendix.

COROLLARY: A 3 x 3 or a 4 x 4 risk matrix satisfying
weak consistency, betweenness, and consistent color-
ing (and having more than one color) has a unique
coloring, as follows. The left column and bottom row
are green, the top right cell (for a 3 x 3 matrix) or the
4 top right cells (for a 4 x 4 matrix) are red; and all
other cells are yellow.

Proof: Theorem 1 implies that the left column and
bottom row are green. Assuming that the upper right
cellisred (since there is more than one color and this s
the most severe cell), consistent coloring implies that
the two cells in a 4 x 4 matrix that share edges with
it must also be red and that the cell that both of these
share edges with (diagonally below and to the left of
the upper right cell) must also be red. Betweeness
then implies that all other cellsina 3 x 3 or4 x 4
matrix must be yellow. QED.

This result shows that it is possible to construct 3 x
3 and 4 x 4 matrices (although not 2 x 2 matrices)
satisfying all three of the normative axioms proposed
in this section. There is only one way to do so, how-
ever: any other colorings violate one or more of the
axioms. For larger matrices, there is greater flexibility,
as illustrated next.

3.5.1. Example: The Two Possible Colorings of a
Standard 5 x 5 Risk Matrix

Table V shows two possible colorings of a 5 x
5 risk matrix that are consistent with the axioms of
weak consistency, betweenness, and consistent color-
ing and also with a fully quantitative interpretation
of the two axes, whose product gives a quantitative
measure of risk (e.g., risk = frequency x severity; ex-
pected utility = success probability x utility of success;
reduction in perceived risk = perceived reduction in
expected annual frequency of adverse events x per-
ceived average severity per event, and so forth). The
axes are normalized to run from (0, 0) at the lower
left corner of the matrix to (1, 1) at the upper right
corner, and the grid lines partition the axes into equal
quantitative intervals.

In these tables, a “green contour” (with numeri-
cal value of 0.18) extends from the upper left cell to
the lower right cell of the matrix (both of which are
green, by Theorem 1), passing through a total of 9
cells. (All cells containing this contour are green, as
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Table V. Two Possible Colorings of a Standard 5 x 5 Risk Matrix

0-0.2 0.2-04 0.4-0.6 0.6-0.8 0.8-1
0.8-1 0.18,1 0.21,0.86 Yellow Red Red
0.6-0.8 Green 0.24,0.75 Yellow Yellow Red
0.4-0.6 Green 0.36,0.5 0.42,0.42  Yellow Yellow
0.2-0.4 Green Green 0.5,0.36 0.75,0.24 0.86,0.21

0-0.2 Green Green Green Green 1,0.18

0-02  02-04 0.4-0.6 0.6-0.8 0.8-1

0.8-1 0.18,1 0.21,0.86 Green Yellow Red
0.6-0.8 Green 0.24,0.75 Green Yellow Yellow
0.4-0.6 Green 0.36,0.5 0.42,0.42 Green Green
0.2-04 Green Green 0.5,0.36 0.75,0.24 0.86,0.21
0-0.2 Green Green Green Green 1,0.18

are all cells below and to the left of it, by consistent
coloring.) The upper right-most cell is defined to be
red (top risk priority). The cell to its left and the cell
below it each contain points with higher quantitative
risks than those of points in this top priority cell’s
lower left corner; therefore, they must also be red (by
consistent coloring) unless adjacent green cells make
them yellow. The other yellow cells are implied by
betweenness.

4. RISK MATRICES WITH TOO MANY
COLORS GIVE SPURIOUS RESOLUTION

The foregoing analysis implies that,fora 5 x Srisk
matrix to be consistent with a fully quantitative inter-
pretation as in Table IV, it must have exactly three
colors. This is violated in many practical applications.
For example, Table VI shows a default risk matrix
used in some commercial risk management software
tools designed to help support risk analysis standards
and recommendations. Such a four-color matrix is in-
consistent with the assumption that the colors repre-
sent relative sizes of underlying quantitative risks as
in Table IV. For example, if the horizontal and ver-
tical axes of Table VI are interpreted quantitatively
as in Table IV, then Table VI assigns a higher rating
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to (0.81, 0.21) than to (0.79, 0.39), even though the
former has a product of 0.17 and the latter a product
of 0.31.

4.1. Example: A 4 x 4 Matrix for Project
Risk Analysis

The use of risk matrices for risk analysis of
projects has been described as follows by the Califor-
nia Division of the Federal Highway Administration.

Risk is computed as the probability of occurrence mul-
tiplied by the consequence of the outcome. Probability
is between 0 [minimal] and 1 [certain]. Consequence
is expressed in terms of dollars, features, or schedule.
Multiplying probability of occurrence and consequence
[impact analysis] together gives a risk assessment value
between 0 [no risk] and 1 [definite and catastrophic].
...Below is an example of the matrix used for such an
evaluation. The numbers are the order in which the
risks are to be considered. Anything that is in the box
labeled “1” is the highest priority.

Likely  Probable Improbable Impossible
0.7-1.0 041t00.7 0.0t0 0.4 0
Catastrophic 1 3 6
09t01.0
Critical 2 4 8
0.7t0 0.9
Marginal 5 7 10
0.41t00.7
Negligible 9 11 12
0to 0.4

Source: California Department of Transportation, 2007
www.fhwa.dot.gov/cadiv/segb/views/document/Sections/Section3/
3.19_4.htm.

Table VII presents this risk matrix with its horizontal
and vertical axes exchanged and oriented to be in-
creasing, consistent with the conventions in previous
examples.

The matrix has 13 priority levels as possible out-
puts, far greater than the three levels needed for a

Likelihood\Consequence

Insignificant ~ Minor Moderate Major Catastrophic

Table VI. Default 5 x 5 Risk Matrix Almost certain

Used in a Risk Management lee.l Y
Soft Syt Possible
oftware System Unlikely
Rare

Blue Orange Red Red Red
Light green Blue Orange Red Red
Light green Blue Blue Orange Red
Green Light green Blue Blue Orange
Green Green Light green Light green Blue

Source: Adapted from www.incom.com.au/risk.asp?ID=471.
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Negligible Marginal Critical Catastrophic
Probability\Consequence 0to0.4 0.4 to 0.7 0.7t0 0.9 09to 1.0
Likely 0.7-1.0 9 5 2 1 Table VII. Example Risk Matrix for
Probable 0.4-0.7 11 8 4 3 Airport Projects
Improbable 0.0- 0.4 12 10 7 6
Impossible 0 0 0 0 0

quantitative risk interpretation consistent with our
axioms. The excess levels make it inconsistent with
a coherent quantitative interpretation. For example,
it assigns a priority rating of 8 to a quantitative risk
of 0.42 (from a probability = 0.65 of a loss of relative
severity 0.65 on a scale from 0 = no loss to 1 = worst
catastrophic loss considered), but it assigns a much
higher priority rating of 3 to a lower quantitative risk
of 0.37 (probability = 0.41, consequence = 0.91). (Re-
call that outputlevels in the cells are numbered so that
1 = top priority.) Similarly, a loss of 0.6 with probabil-
ity 1 receives a lower priority level than a quantitative
loss of 0.8 with probability 0.5 (5 vs. 4), even though
the former has a quantitative risk greater than the
latter (0.6 vs. 0.4). A priority level of 12 is assigned
to a probability 0.33 of consequence 0.33, but a pri-
ority level of 6 is assigned to a numerically identical
risk consisting of a probability 0.11 of consequence
0.99. Thus, as expected, the priority ratings implied
by the 13 distinct priority levels in this matrix do not
successfully represent the relative sizes of these quan-
titative risks. (That the qualitative ratings reverse the
quantitative ratings in such examples cannot be jus-
tified by risk aversion, since the consequence axis is
explicitly assumed to have been already transformed,
scaled, or defined in such a way that the product of the
two coordinate axes, probability and consequence, is
the measure of quantitative risk that the qualitative
matrix attempts to represent.)

The upper left-most cell of the risk matrix in
Table VII illustrates range compression: discrete cat-
egorization lumps together very dissimilar risks, such
asan adverse consequence of severity 0 occurring with
probability 1 and an adverse consequence of severity
0.39 occurring with probability 1.

The two possible 5 x 5 risk matrices in Table V
have very limited resolution. They assign a green rat-
ing to all risks less than 0.24, and a red rating to all
risks greater than 0.64 (on a scale normalized to run
from 0 to 1). Attempts to use more colors or risk rat-
ing levels to improve resolution, as in the preceding
example, necessarily create more ranking-reversal er-
rors, in which quantitatively smaller risks are assigned

qualitatively higher rating levels than some quantita-
tively larger risks.

As a rough measure of the degree to which these
limitations might affect practical work, suppose that
the cases being classified by a risk matrix have their
two components independently and uniformly dis-
tributed between 0 and 1. Then the probability that a
randomly selected pair of points can be correctly and
unambiguously rank-ordered by a matrix such as the
one in Table IVa (i.e., the probability that one point
falls in a red cell and the other in a green cell) would
be only (3/25 red fraction) x (17/25 green fraction) =
8.2%. Thus, over 90% of the time, the matrix will not
be able to rank-order the two points correctly with
certainty.

5. RISK RATINGS DO NOT NECESSARILY
SUPPORT GOOD RESOURCE
ALLOCATION DECISIONS

How well can the information provided by a risk
matrix guide risk management resource allocation de-
cisions? This section examines some limitations that
hold even if the risk matrix provides qualitative rat-
ings that perfectly represent underlying quantitative
risks.

5.1. Example: Priorities Based on Risk Matrices
Violate Translation Invariance

Suppose that a risk manager can afford to elimi-
nate all but one of the following three risks: (A) lose
$95 with certainty; (B) lose $75 with certainty; (C)
lose $95 with probability 50% (else lose nothing).
Which one should she keep to minimize risk (here
defined as expected loss)? According to the priority
ranking in Table VII (and interpreting the normal-
ized consequence axis running from 0 to 1 as cor-
responding dollar losses running from $0 to $100),
the answer is (C). (This has the lowest rating, 3, com-
pared to ratings of 1 for A and 2 for B. Recall that in
Table VII, lower numbers in the cell indicate higher
priority.)
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Now, suppose that all potential losses are reduced
by $15, so that the new alternatives are: (A’) lose $80
with certainty; (B’) lose $60 with certainty; (C’) lose
$80 with probability 50% (else lose nothing). Accord-
ing to Table VII, one should now choose to keep (B”)
(rating = 5, compared to ratings of 2 and 4 for the
A’ and B’, respectively). Thus, simply reducing the
potential loss by the same amount for all three risks
changes the prescribed priority ordering among them.
This violates the principle of translation invariance for
coherent risk measures (Artzner et al., 1999). More-
over, keeping (B’) instead of (C’) is inconsistent with
minimizing risk (defined as expected loss in this ex-
ample). Thus, the risk matrix in Table VII does not
necessarily support effective risk management deci-
sion making.

Similarly in Table VI, if a risk manager can elimi-
nate exactly two out of four risks, corresponding to the
four lower left-most cells in the table, and if ties are
broken at random, then the probability that the risk in
the second column and the bottom row will be elim-
inated is one-third (since the risk in the higher-rated
cell toits northeast will certainly be selected, followed
by any one of the remaining three tied risks). Translat-
ing all consequences one cell to the right (by adding
the same incremental consequence value to each of
them) increases the probability to one-half (since this
alternative will now tie with one other for second
place). But a second translation by one step to the
right reduces the selection probability to zero (since
now the two blue cells in the second row dominate the
two cells in the first row). Finally, one more rightward
shift of the four alternatives increases the probability
that this one will be selected to one-half again.

In Table IV, if only one of four risks in the four
upper left cells (e.g., with respective (probability, con-
sequence) values of (0.9,0.1), (0.9, 0.3), (0.7,0.1), and
(0.7, 0.3)) can be selected to eliminate, and if ties are
broken at random, then the probability that the nu-
merically greatest of these risks, namely, (0.9, 0.3),
would be selected for elimination is only one-fourth.
Translating all four consequences rightward by the
same amount, 0.4, would increase this selection prob-
ability to 1. Translating them further rightward by an
additional 0.2 would reduce the selection probabil-
ity to one-third (since the three red cells would then
be tied). Thus, the probability of assigning top prior-
ity to the numerically greatest risk does not satisfy
translation invariance. (This same pattern also occurs
for successive rightward translations of the four lower
left-most cells in Table I.)
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5.2. Example: Priority Ranking Does Not
Necessarily Support Good Decisions

Setting: A risk manager has identified the follow-
ing three risk reduction opportunities:

e Act A reduces risk from 100 to 80. It costs $30.
e Act B reduces risk from 50 to 10. It costs $40.
o Act Creduces risk from 25 to 0. It costs $20.

(This example can also be constructed so that all three
acts start from the same base level of risk, say 50, and
A, B, and Creduce risk by 20, 40, and 25, respectively.
Using different base levels allows for the possibility
that the different options A, B, and C being compared
protect different subpopulations.) The risk manager’s
goal is to purchase the largest possible total risk re-
duction for the available budget.

To assist risk-management decision making, sup-
pose that a risk matrix is used to categorize opportuni-
ties A, B, and C. Resources will then be allocated first
to the top-rated alternatives, working down the prior-
ity order provided by the risk matrix until no further
opportunities can be funded.

Problem: How should a risk matrix categorize A, B,
and C to support the goal of achieving the largest risk
reduction from allocation of limited funds?

Solution: The answer depends on the budget. For a
budget of $40, the largest feasible risk reduction is
achieved by funding B, so the best priority order puts
B first. If the budget is $50, then funding A and C
achieves the greatest risk reduction, so B should be
ranked last. At $60, the best investment is to fund B
and C, so now A should be ranked last. In short, no
categorization or rank-ordering of A, B, and C opti-
mizes resource allocation independent of the budget.
No possible priority order (or partial order, if some
ratings are tied) is optimal for budgets of both $49
and $50. This illustrates a limitation on the type of out-
putinformation—ordered categorical classification—
provided to decisionmakers by risk matrices. Such in-
formation is in general not sufficient to support ef-
fective allocation of risk-reducing resources because
solutions to such resource allocation optimization
problems cannot in general be expressed as priority
lists or categories that should be funded from the top
down until no further items can be afforded (Bertsi-
mas & Nino-Mora, 1996).

Thus, the input information going into a risk
matrix (ordinal ratings of event frequencies and
severities) is simply not sufficient to optimize risk
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management resource allocations, or even to avoid
very poor allocations, as in the above example.
Calculating optimal risk management resource al-
locations requires quantitative information beyond
what a risk matrix provides, for example, about
budget constraints and about interactions among
countermeasures. In general, risk rankings calcu-
lated from frequency and severity do not suffice to
guide effective risk management resource allocation
decisions.

5.3. Categorization of Uncertain Consequences is
Inherently Subjective

To use a risk matrix, it is necessary to be able to
categorize the alternatives being compared into the
cells of the matrix. However, decision analysis prin-
ciples imply that there is no objective way to cate-
gorize severity ratings for events with uncertain con-
sequences. Subjective risk attitudes play an essential
(but seldom articulated) role in categorizing severity
for such events. Thus, the information in a risk ma-
trix represents a mixture of factual (probability and
consequence) information about the risk and (usually
unstated) psychological information about the risk at-
titude of the person or people performing the risk
categorization. Since the risk attitudes of the builders
are seldom documented, it can be impossible to deter-
mine how consequence severity classifications should
be changed when someone else views or uses the
matrix.

5.4. Example: Severity Ratings Depend on
Subjective Risk Attitudes

For a decisionmaker with an exponential util-
ity function, the certainty equivalent (CE) value of
a prospect with normally distributed consequences
is CE(X) = E(X) — k x Var(X), where k is a
parameter reflecting subjective risk aversion (k =
0.5 x coefficient of risk aversion); E(X) is the
mean of prospect X; Var(X) is its variance; and
CE(X) is its certainty-equivalent value (i.e., the de-
terministic value that is considered equivalent in
value to the uncertain prospect) (Infanger, 2006,
p. 208). Consider three events, A, B, and C, with
identical probabilities or frequencies and having
normally distributed consequences (on some out-
come scale) with respective means of 1, 2, and
3 and respective variances of 0, 1, and 2. The
certainty equivalents of prospects A, B, and C
are:

Cox
CEA)=1
CEB)=2-k
CE(C) =3 —2k.

For a risk-neutral decisionmaker (for whom k = 0),
the ordering of the prospects from largest to smallest
certainty equivalent value is therefore: C > B > A.
For a risk-averse decisionmaker with k = 1, all three
prospects have the same certainty equivalent value of
1. For a more risk-averse decisionmaker with k = 2,
the ordering of the prospects is: A > B > C. Thus, the
certainty equivalents of the severities of the prospects
are oppositely ordered by decisionmakers with differ-
ent degrees of risk aversion. There is no objectively
correct ordering of prospect severity certainty equiva-
lents independent of subjective attitudes toward risk.
But risk matrices typically do not specify or record the
risk attitudes of those who use them. Users with dif-
ferent risk attitudes might have opposite orderings,
as in this example. Neither is objectively (indepen-
dent of subjective risk attitude) more correct than the
other. As a result there is no objective way to classify
the relative severities of such prospects with uncertain
consequences.

5.5. Example: Pragmatic Limitations of Guidance
from Standards

In practice, various standards provide written
guidance on how to classify severities for use in
risk matrices. For example, Table VIII shows the
severity ratings suggested in a 1998 General Ac-
counting Office report on “Combating Terrorism,”
based on the widely cited Military Standard 882C
(https://crc.army.mil/guidance / system safety / 882C.
pdf). As that standard notes: “These hazard severity
categories provide guidance to a wide variety of
programs. However, adaptation to a particular
program is generally required to provide a mutual
understanding ... as to the meaning of the terms
used in the category definitions. The adaptation must
define what constitutes system loss, major or minor
system or environmental damage, and severe and
minor injury and occupational illness.” Even with
these caveats, the guidance in Table VIII does not
resolve the type of ambiguity in the previous example.
For example, it offers no guidance on how to rate a
consequence that is zero with probability 90% but
catastrophic otherwise (perhaps depending on wind
direction or crowding of a facility or of evacuation
routes at the time of a terrorist attack). Moreover,
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Severity Level

Characteristics

I Catastrophic Death, system loss, or severe environmental damage

. . II Critical Severe injury, severe occupational illness, major system or environmental
Table VIII. Severity Levels of Undesired JUry P 101 8y
damage
Event Consequences for . . e . . . . .
. . III Marginal ~ Minor injury, minor occupational illness, or minor system or environmental
Combating Terrorism damage

IV Negligible Less than minor injury, occupational illness, or less than minor system or
environmental damage

Source: GAO (1998).

it introduces other ambiguities. For example, how
should one rate the severity of a consequence that
consists of 1 death and 1 severe injury compared
to that of a consequence of 0 deaths but 50 severe
injuries? The answer is not obvious from Table VIII.

The discrete qualitative categories provided in
guidance such as Table VIII are also inconsistent with
the continuous quantitative nature of many physical
hazards. For example, should a condition that causes
“negligible” environmental damage on each occur-
rence (e.g., leaking 1 ounce of jet fuel per occurrence)
but that causes a high frequency of these small events
(e.g., averaging 5 events per hour) truly have a lower
severity rating than a second condition that causes
more damage per occurrence (e.g., leaking 10 pounds
of jetfuel per occurrence) but that causes less frequent
occurrences (e.g., once per week)? (Both would be
assigned the highest possible frequency rating by Mil-
itary Standard 882C.) If so, then the risk matrix analy-
sis could give lower priority to eliminating a threat of
leaking 52.5 pounds per week ( = 5 ounces per hour x
24 hours/day x 7 days per week) than to eliminating a
threat of leaking only 10 pounds per week, due to the
greater “severity” of 10 pounds than 1 ounce and the
equal “frequency” rating of common events (an ex-
ample of range compression). In such cases, the idea
of rating severity independently from frequency ap-
pears flawed.

Focusing on applying qualitative rating criteria,
rather than on more quantitative comparisons of risks,
can create irrational risk management priorities. The
following example illustrates how uncritical applica-
tion of risk matrix guidance might promote misper-
ceptions and misrankings of the relative risks of dif-
ferent strategic investment opportunities.

5.6. Example: Inappropriate Risk Ratings in
Enterprise Risk Management (ERM)

Suppose that a company must choose between
the following two risky investment strategies for

responding to major and pervasive uncertainties, such
as climate change risks.

e Strategy A has probability 0.001 of leading
to a small growth rate that barely meets
shareholder expectations; otherwise (proba-
bility 99.9%) shareholder value and growth
will increase by a negligible amount (e.g.,
< 0.00001%), disappointing shareholders and
failing to meet their expectations.

e Strategy B has probability 50% of caus-
ing rapid and sustained growth that greatly
exceeds shareholder expectations; otherwise
(e.g., if the outcome of a crucial R&D project
is unsuccessful), shareholder value and growth
will not grow (growth rate = 0%).

Which strategy, A or B, better matches a responsible
company’s preferences (or “risk appetite”) for risky
strategic investments?

Commonsense might suggest that Strategy B is
obviously better than Strategy A, as it offers a 50%
probability of greatly exceeding expectations instead
of a 0.1% probability of barely meeting them, with no
significant difference in downside risk. However, un-
critical application of risk matrices suggested as exam-
ples for enterprise risk management (ERM) systems
could rate B as more risky than A. For example,
Australia published a risk management “guide for
business and government . .. [that] is consistent with
the Australian and New Zealand Standard for Risk
Management, AS/NZS 4360:2004, which is widely
used in the public and private sectors to guide strate-
gic, operational and other forms of risk management.
The Guide describes how the routine application of
the Standard can be extended to include the risks
generated by climate change impacts” (Australian
Government, 2006). The illustrative risk matrix and
category definitions for a commercial business (Ta-
bles 10-12 of the Guide) could be used to assign a
“medium” risk priority to Strategy A but a “high”
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risk to strategy B, making B appear to be less at-
tractive than A. (For A, the likelihood of the ad-
verse consequence, 99.9%, is classified as “almost
certain.” The consequence is described as “Growth
would be achieved but it would fail to meet expecta-
tions,” which is classified as a “minor” consequence.
The risk matrix example in Figure 12 of the Guide cat-
egorizes the likelihood-consequence pair (almost cer-
tain, minor consequence) as a “medium” risk. For B,
the likelihood of the adverse consequence is classified
as “likely,” the consequence is described as “There
would be no growth,” and this is classified as a “mod-
erate” consequence. The combination (likely, mod-
erate consequence) is categorized as a “high” risk.)
Thus, a tight focus on implementing the discrete cat-
egorization criteria in the guidance could distract at-
tention from the fact that most shareholders would
gladly trade a negligible increase in adverse conse-
quences for a large increase in the probability of a
much better outcome. In the terminology of multicri-
teria decision making, the discrete categorization of
consequences and probabilities inherent in risk matri-
ces can produce noncompensatory decision rules that
do not reflect the risk trade-off preferences of real
decisionmakers and stakeholders.

Quantitative risk assessment was developed in
part to help prevent the types of paradoxes illustrated
in these examples. Even if the quantities in the fuel
leaking example were quite uncertain (e.g., an aver-
age of 1-10 ounces every few minutes in the first case
and 0-100 pounds every few months in the second), a
rough quantitative calculation would reveal that the
first threat is much more severe than the second. Sim-
ilarly, even a rough quantitative comparison of strate-
gies A and B in the enterprise risk management exam-
ple would show that B is much more attractive than
A. By contrast, qualitative or semiquantitative risk
assessments based on ordered categories do not nec-
essarily prevent rating reversals and misallocations of
resources, as in these examples—and may even un-
intentionally encourage them, by directing risk man-
agement effort and attention away from the key quan-
titative comparisons involved and toward the (often
inherently subjective) task of categorizing frequency
and severity components.

6. DISCUSSION AND CONCLUSIONS

The theoretical results in this article demonstrate
that, in general, quantitative and semiquantitative risk
matrices have limited ability to correctly reproduce
the risk ratings implied by quantitative models, es-
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pecially if the two components of risk (e.g., frequency
and severity) are negatively correlated. Moreover, ef-
fective risk management decisions cannot in general
be based on mapping ordered categorical ratings of
frequency and severity into recommended risk man-
agement decisions or priorities, as optimal resource
allocation may depend crucially on other quantitative
information, such as the costs of different counter-
measures, the risk reductions that they achieve, bud-
get constraints, and possible interactions among risks
or countermeasures (such as when fixing a leak pro-
tects against multiple subsequent adverse events).

Categorizing severity may require inherently sub-
jective judgments (e.g., reflecting the rater’s personal
degree of risk aversion, if severity is modeled as a ran-
dom variable) and/or arbitrary decisions about how
far to aggregate multiple small and frequent events
into fewer and less frequent but more severe events.
The need for such judgments, and the potential for in-
consistencies in how they are made by different peo-
ple, implies that there may be no objectively correct
way to fill out a risk matrix.

Conversely, the meaning of a risk matrix may
be far from transparent, despite its simple appear-
ance. In general, there is no unique way to inter-
pret the comparisons in a risk matrix that does not
require explanations—seldom or never provided in
practice— about the risk attitude and subjective judg-
ments used by those who constructed it. In particular,
if some consequence severities are random variables
with sufficiently large variances, then there may be no
guarantee that risks that receive higher risk ratings in
a risk matrix are actually greater than risks that re-
ceive lower ratings.

In summary, the results and examples in this ar-
ticle suggest a need for caution in using risk matri-
ces. Risk matrices do not necessarily support good
(e.g., better-than-random) risk management decisions
and effective allocations of limited management at-
tention and resources. Yet, the use of risk matrices is
too widespread (and convenient) to make cessation
of use an attractive option. Therefore, research is ur-
gently needed to better characterize conditions under
which they are most likely to be helpful or harmful
in risk management decision making (e.g., when fre-
quencies and severities are positively or negatively
correlated, respectively) and that develops methods
for designing them to maximize potential decision
benefits and limit potential harm from using them.
A potentially promising research direction may be
to focus on placing the grid lines in a risk matrix to
minimize the maximum loss from misclassified risks.
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We hope to present some positive results from this
optimization-based approach soon.

APPENDIX: PROOF OF THEOREM 1

By definition, the lower left-most cell is green.
Consistent coloring implies that any contour must be
green if it lies below/to the left of the one passing
through the upper right corner of this lower left-most
cell (i.e., the contour through the points (0.04, 1), (0.2,
0.2), (1, 0.04) in the numerical example in Table IV),
since (a) it passes through the lower left-most cell
(which is green by definition); and (b) none of the
cells that it passes through is red (by Lemma 2). By
construction, such a green contour passes through all
cells in the left-most column and in the bottom row.

Now, consider the cell directly above the lower
left-most cell (i.e., the cell containing the point (0.1,
0.3) in Table IV). Suppose that, contrary to the
claimed result, this cell is not green. It cannot be red,
by Lemma 2. For it to be an intermediate color (not
green), it must contain at least one red contour (by
color consistency and the fact that a green contour
passes through it). This cell cannot be “between” ared
and a green cell, since it is on an edge of the matrix, so
it cannot acquire an intermediate color that way. This
red color neither comes from the cell above it in the
left-most column (which is nonred, by Lemma 2), nor
from any cell in the bottom row (again by Lemma 2).
Since contours are downward-sloping, the only re-
maining possibility is for the cell to its right (the cell
containing (0.3, 0.3) in Table IV) to be red. But this
would violate betweenness (at the point (0.2, 0.2) in
Table IV). Therefore, the assumption that the cell di-
rectly above the lower left-most cell is not green leads
to a contradiction. Hence, it must be green. By a sym-
metrical argument, the cell directly to the right of the
lower left-most cell (the cell containing (0.3, 0.1) in
Table IV) must also be green.

Next, suppose that the third cell in the left-most
column (the one containing (0.1, 0.5) in Table IV) is
not green. Since green contours pass through it (as it
is in the left-most column), it can only be nongreen if
some red contour also passes through it (by color con-
sistency and the fact that it is an edge cell). This red
contour could not come from a red cell below it in the
left-most column, or in the bottom row (by Lemma 2),
nor from the cell directly to its southeast (containing
(0.3,0.3) in Table IV) (since if that were red, it would
violate Lemma 1 and betweenness for the cells so far
proved to be green). The only remaining possibility is
that the cell to its right (the one containing (0.3, 0.5)
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in Table 1V) is red. But this would violate between-
ness (with the second cell in the left-most column, the
cell containing (0.1, 0.3) in Table IV, which we have
proved above must be green). Hence, the assumption
that the third cell in the left-most column is not green
implies a contradiction. So, it must be green. Symmet-
rically, the third cell in the bottom row must be green.
This construction (showing that a cell directly above
a green cell in the first column, with only nonred cells
to its southeast, must itself be green) can be iterated
for all remaining cells in the left-most column, thus es-
tablishing that they all must be green; symmetrically,
all remaining cells in the bottom row must be green.
This proves part (a). Part (b) is then an immediate
consequence of part (a) and Lemma (2). QED

Comment: This proof does not depend on the number
of rows or columns in the table. Therefore, its conclu-
sion (that the left-most column and bottom row con-
sist entirely of green cells) holds for risk matrices of
any size, under the stated conditions of weak consis-
tency, betweenness, and consistent coloring.
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